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Abstract
We present the exact solution of a three-dimensional lattice model of a polymer
confined between two sticky walls, that is within a slab. We demonstrate that
the model behaves in a similar way to its two-dimensional analogues and agrees
with Monte Carlo evidence based upon simulations of self-avoiding walks in
slabs. The model on which we focus is a variant of the partially directed walk
model on the cubic lattice. We consider both the phase diagram of relatively
long polymers in a macroscopic slab and the effective force of the polymer on
the walls of the slab.

PACS numbers: 05.50.+q, 64.60.De

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Polymers in confined geometries have been studied both for their intrinsic interest and because
of connections to steric stabilization and sensitized flocculation of colloidal dispersions. When
a polymer is confined to a pore or between two parallel plates the polymer loses entropy and
so the polymer exerts a force on the confining surface. If we focus on the confinement by two
parallel plates and think of the case where the polymer is attracted to one plate but not to the
other, the force exerted by the polymer is still repulsive but smaller in magnitude, because it
spends more time closer to the attractive plate. In a sense it has less entropy to lose. If the
polymer is attracted to both plates, this can result in an attractive force between the plates.

In a classic paper, DiMarzio and Rubin [1] studied a random walk model of a polymer
between two parallel lines or planes. Self-avoiding walks (as a somewhat more realistic
polymer model) between two parallel planes were studied especially for the case where there
is no interaction with the confining walls. In this case, some rigorous results are available
[2] showing that the force is always repulsive, and detailed results are available for small
separations [3–5]. Daoud and de Gennes [6] presented a scaling argument about how the force
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depends on the distance between the confining plates. When the self-avoiding walk interacts
with the planes the situation is more complicated. The interactions with the two planes can be
the same or different resulting in a phase diagram where some regions are attractive and others
repulsive. Some rigorous results are available [7] bounding the repulsive regions, and the
phase diagram has been mapped out numerically using Monte Carlo and exact enumeration
methods [8].

Another class of polymer models that have been studied recently includes Dyck and
Motzkin paths [9, 10] confined to a slit and interacting with the bounding lines. These are
models in two dimensions with a directedness constraint. This makes the models exactly
solvable. For these models the phase diagram can be constructed exactly (for infinite walks
in wide slits), and the asymptotics of the free energy (as the slit width diverges) can be
obtained. The scaling behaviour, when the walks and the slit width are both finite, has also
been investigated [11]. The form of the phase diagram is the same for both Dyck and Motzkin
path models (though differing in the detailed locations of the phase boundaries), and the form
seems to be the same as that found numerically for the self-avoiding walk model. For a review
of this work, see the paper by Owczarek et al [12].

In this paper, we investigate a model which extends the Dyck and Motzkin path models
but is still much easier to handle than self-avoiding walks. This is a partially directed model
in three dimensions, i.e. on the simple cubic lattice. If we assign coordinates (x1, x2, x3) to
lattice vertices then x1, x2 and x3 are all integers. The walk can be confined to a slab of width
w by applying the constraint that 0 � x3 � w. The walk can take steps in the positive x1-
and positive x2-directions and in the positive and negative x3-directions, subject to the slab
constraint and to being self-avoiding. In fact, there is a bijection to a bicoloured partially
directed walk (PDW) on the square lattice, and we use this in our method of solution. We
consider the half-space problem where w goes to infinity before the length, n, of the walk goes
to infinity, and the large but finite slab case where n goes to infinity and then the behaviour
is investigated for large w. Our results for the half-space problem confirm earlier work in
[13]. We construct the phase diagram and find the locus of the zero-force curve separating
regions where the force is repulsive or attractive. The form of the phase diagram is similar to
that found for Dyck and Motzkin paths and adds further evidence that the general form of the
phase diagram is universal, and the same for self-avoiding walks.

2. Three-dimensional partially directed walks

In this paper, we consider a three-dimensional lattice polymer model based upon partially
directed walks. The allowed steps for these walks are steps from the set S4 = {(1, 0, 0),

(0, 1, 0), (0, 0, 1), (0, 0,−1)} on the simple cubic lattice. We shall refer to the walks as three-
dimensional partially directed walks (3dPDWs). An example is shown in figure 1(left). We
are interested in their properties when confined to a slab where the walls of the slab have a
sticky potential. Hence, we shall be concerned with enumerating the number of self-avoiding
walks made up of these edges that start and end in the plane x3 = 0 such that every vertex
has 0 � x3 � w. We refer to all walks that start and end in the same plane as loops. Note,
we only consider the loop case because previous results have shown that tails and bridges
have the same critical behaviour [9]. We shall keep track of the number of contacts for each
walk with the planes x3 = 0 and x3 = w using the two parameters a and b, respectively. We
shall focus on the case where the contacts are associated with the edges in the two surfaces,
although we have also analysed a vertex-weighted model (appendix A), and it shows similar
behaviour to our primary model. The corresponding models in two dimensions are discussed
briefly in appendix B.
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Figure 1. An example of a three-dimensional partially directed walk (left) and the associated
bicoloured partially directed walk (right).

We shall utilize a related two-dimensional model in order to study 3dPDWs. The fact that
the steps of 3dPDWs in the x1- and x2-directions are fully directed suggests a bijective mapping
to a bicoloured partially directed walk (bic2dPDW) on the square lattice that has two different
types of horizontal steps. Such walks are made up of steps from the set Sb = {EB,ER,N, S}.
Here, N and S are vertical steps in the (0, 1) and (0,−1) directions, respectively, and the steps
Ex are horizontal steps in the (1, 0) direction. We differentiate between the two horizontal
steps by assigning a ‘colour’ to them, for example red or blue. The bijection between the two
models takes the steps (0, 0,±1) to N and S, respectively, and each of (1, 0, 0) and (0, 1, 0) to
one of the Ex steps. We note that the correspondence in the ‘vertical’ steps of the two models
ensures that contacts in the 3dPDW model are identified with contacts in the bic2dPDW model.
An example is shown in figure 1(right).

3. Functional recurrence via factorization

3.1. Non-interacting case

We begin by first considering the case of unweighted walks. In this problem we aim to
enumerate the number of bic2dPDW/3dPDW configurations that fit within a slit/slab of
width w.

Let us define the generating function Pw(z) for these walks, without wall interactions, as
the power series:

Pw(z) = 1 +
∞∑

n=1

p(w)
n zn, (3.1)

where p(w)
n is the number of bic2dPDW/3dPDW configurations of length n � 1 that fit in a

slit/slab of width w.
Using a wasp-waist factorization (detailed below) of the bic2dPDW for the generating

function of these walks, we can write:

Pw+1 = 1

1 − 2z
[1 + z2(Pw − 1) + 2z3(Pw − 1)Pw+1]

= 1

1 − 2z
[1 − z2 + z2Pw − 2z3Pw+1 + 2z3PwPw+1] (3.2)

Figure 2 is a schematic representation of the factorization above which we now explain.
The terms in equation (3.2) correspond to the components in the pictorial factorization in
figure 2, respectively. On the right-hand side, we identify the first of these terms with all
bic2dPDWs that never leave the bottom surface i.e. walks made up entirely of steps in the
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Figure 2. Factorization of bicoloured partially directed walks in a strip of width w + 1. The grey
loops represent all bic2dPDWs except the empty walk.

(1, 0)-direction. The factor of 2 reflects the fact that there are two types of horizontal steps
in the walk model. The other terms represent walks that leave the bottom surface after their
ith step. Walks which consist of a single loop (having left the bottom surface) are described
by the second term, whereas walks that are composed of more than one loop are described
by the third term in equation (3.2). In each case, after leaving the surface for the first time
the walk completes a loop before returning to the bottom surface. There are two conditions
on the loop, namely (i) it must not be the empty walk, and (ii) it must fit in a slit of width
w. The first of these conditions guarantees self-avoidance for the original bic2dPDW once it
returns to the line x2 = 0. The second condition ensures that all of the vertices of the original
bic2dPDW still fit in a slit of width w + 1. To obtain the third term in the factorization, we
note that any walk which continues after returning to x2 = 0 must have its next step in the
(1, 0)-direction. A step in any other direction would either place vertices outside the slit or
fail to be self-avoiding. This horizontal step can be of either type (red or blue) resulting in the
factor of 2 in this term. After the step in the (1, 0)-direction, the walk can be completed by
any bic2dPDW loop that still fits in a slit of width (w + 1).

For a slit/slab of width one, we can write:

P1(z) = 1 − 2z + 2z3

1 − 4z + 4z2 − 4z4
(3.3)

and iterate equation (3.2) to obtain the generating function for walks in a slit/slab of width w

for small values of w. Furthermore, we find that since P1(z) is a rational function all other
Pw(z) for finite values of w will also be rational. This implies that any singularities for the
Pw(z)’s must arise from zeros of their denominators.

3.2. Full model

We define the partition function of our bic2dPDW model and equally the 3dPDW model, as

Z(w)
n (a, b) =

∑

u,v

p(w)
n (u, v) au bv, (3.4)

where p(w)
n (u, v) is the number of n-step configurations with u edges in x3 = 0 and v edges in

x3 = w. The corresponding generating function is

Gw(a, b, z) = 1 +
∞∑

n=1

Z(w)
n (a, b) zn. (3.5)

We have Pw(z) = Gw(1, 1, z).
Pictorially, the factorization for this problem is given by figure 2 and by taking into account

the contacts with the distinguished lines we can write the resulting factorization equation as

Gw+1(a, b, z) = 1

1 − 2az
[1 + z2(Gw(1, b, z) − 1) + 2az3(Gw(1, b, z) − 1)Gw+1(a, b, z)].

(3.6)

4
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We observe the same correspondence between the terms of equation (3.6) and figure 2 as
described in section 3.

4. Finite width generating function

For the finite width slit/slab problem, we first solve equation (3.6) for the case a = 1 and
use the resulting function to obtain the solution for Gw+1(a, b, z) recursively in terms of
Gw(a, b, z). The initial condition for this equation takes the form:

G1(a, b, z) = 1 − 2bz + 2bz3

(1 − 2az)(1 − 2bz) − 4abz4
. (4.1)

Once again, the fact that G1(a, b, z) is a rational function ensures that all generating functions
for finite values of w will also be rational. This allows us to write

Gw(a, b, z) = Rw(a, b, z)

Sw(a, b, z)
, (4.2)

where Rw(a, b, z) and Sw(a, b, z) are polynomials in all of the associated variables. The
functional equation (3.6) can be iterated to produce a sequence of continued fractions (see for
example, section 5.5 of [14]) and hence connected to orthogonal polynomials [15, 16]. We
find that both Rw(a, b, z) and Sw(a, b, z) satisfy the same second-order recurrence relation
(with different initial conditions), namely

Tw+2(a, b, z) = (1 − 2z + z2 + 2z3)Tw+1(a, b, z) − z2Tw(a, b, z) ∀w ∈ N0. (4.3)

For initial conditions we take the numerator and denominator of G0(a, b, z) and G1(a, b, z),
namely

R0(a, b, z) = 1 and R1(a, b, z) = 1 − 2bz + 2bz3 (4.4)

S0(a, b, z) = 1 − 2az − 2bz + 2z and S1(a, b, z) = (1 − 2az)(1 − 2bz) − 4abz4.

(4.5)

We note that the Rw(a, b, z) is independent of a. Using these initial conditions, we can
solve the recurrence relation in equation (4.3) for the numerators and denominators of the
Gw(a, b, z). From this we can write:

Gw(a, b, z) = c1λ
w
+ − c2λ

w
−

c3λw
+ − c4λ

w−
, (4.6)

in terms of the two solutions of a quadratic, that is,

λ± = 1 − 2z + z2 + 2z3 ± �(z)

2
, (4.7)

where

�(z) =
√

1 − 4z + 2z2 − 7z4 + 4z5 + 4z6. (4.8)

The coefficients are given by

c1,2 = (1 − z2)(1 + 2z − 4bz) ± �(z), (4.9)

c3,4 = (1 − z2)[(1 − 2az)(1 − 2bz) + 4z2(1 − a)(1 − b)]

− 4z3 ± (1 − 2az − 2bz + 2z)�(z). (4.10)
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Note that

�(zd) = 0 (4.11)

at z = zd, where

zd = 2

3 +
√

17
. (4.12)

Importantly we point out that λ± in equation (4.7) is real only for z � zd . When z < zd we
have λ− < λ+.

5. Half-plane/Half-space limit

By considering the limit w → ∞ for the slit/slab width, we can obtain the single-surface
adsorption problem as the special case of the slit/slab problem. This is known as the half-
plane limit for the bic2dPDW and the half-space limit for the 3dPDW problem. Note that
this limit is taken for finite walks. However, one then analyses the thermodynamic behaviour
by subsequently considering the limit n → ∞. Hence, this process actually involves two
limits—w → ∞ and n → ∞ and these limits have been shown in two-dimensional walk
problems not to commute [9, 10]. If we consider n → ∞ before w → ∞, we find that the
polymer can have contacts in both surfaces. This persists as the width is increased indefinitely.
Taking the order of the limits this way gives the so-called infinite slit or slab.

Considering the fixed point of equation (3.6) (i.e. w → ∞) we find that the factorization
equation takes the form

Gfix(a, z) = 1

1 − 2az
[1 + z2(Gfix − 1) + 2az3(Gfix − 1)Gfix]. (5.1)

This fixed-point equation is obtained by taking w to infinity and so the half-space generating
function H(a, z) for 3dPDW interacting with only one surface can be found as H(a, z) =
Gfix(a, z).

Solving equation (5.1), we find that the generating function is given by

H(a, z) = N(a, z)

D(a, z)
, (5.2)

where

N(a, z) = 1 + 2z − 4az − z2 − 2z3 + 4az3 − �(z), (5.3)

D(a, z) = 4z(1 − a − 2az + 2a2z + az2 + 2az3 − 2a2z3). (5.4)

The singularities in this expression arise from the square root in the numerator as well as
solutions of D(a, z) = 0. We find two physical singularities, namely

• zd = 2
3+

√
17

from the zero of �(z) which occurs in the numerator N(a, z), and
• zs(a) � zd from the zero of the quartic in D(a, z).

When

a = ac = 7 +
√

17

8
(5.5)

the two singularities are equal.
For values of a < ac, the physical and dominant singularity is given by zd , whereas for

a > ac both zd and zs are physically relevant. However the dominant singularity is determined
by zs(a). The value ac represents a non-analyticity in the free energy of this system, and is

6
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associated with the adsorption phase transition for the half-space/plane model. For a < ac,
the limiting fraction of edges in the surface is zero and the polymer is desorbed, while for
a > ac the limiting fraction is positive and the polymer is adsorbed. In the desorbed phase,
the limiting free energy is related to zd and for the adsorbed phase the free energy is related
to zs(a).

6. Infinite slab limit

6.1. Phase diagram

For the ‘infinite slab’ we are interested in the singularity structure of Gw with respect to z and
its behaviour when w becomes large. Since generating functions for finite widths are rational
functions, we consider the poles of the function in equation (4.6). These arise in zeros of
Sw(a, b, z), that is when

c3λ
w
+ − c4λ

w
− = 0. (6.1)

Consider the smallest positive value of z that satisfies equation (6.1), say zm(w) and the limit
zinf−slab = limw→∞ zm(w). Now for z = zd we have �(zd) = 0 so that λ+ = λ− and c3 = c4

which indeed gives a solution of equation (6.1), regardless of the values of a and b. So we
have zinf−slab � zd . If zinf−slab < zd , this implies that λ+ > λ− and so equation (6.1) becomes

q2w = c3

c4
= D(a, z)D(b, z)

c2
4

, (6.2)

where q2 = λ−/λ+ < 1. This implies that as the slab width becomes large there are two
limit points of singularities that are the zeros of D(a, z) and D(b, z). We shall refer to
the two singularities as zbottom = zs(a) and ztop = zs(b), respectively. The free energy,
κ(a, b) = − log zc, is a monotone non-decreasing function of a and b. For a < ac, zs(a) is
an increasing function of a and hence cannot be the physically relevant singularity. Similarly,
zs(b) cannot be the physically relevant singularity for b < ac. Hence for 0 � a, b � ac the
only physically relevant singularity is zinf−slab = zd . Outside this region all three singularities
are physically relevant and either zs(a) or zs(b) is smaller than zd and hence dominant.

The phase diagram for this system is determined by the dominant singularities in the
(a, b)-plane. We obtain the phase diagram for this system by considering where pairs of
singularities are equal. Looking at zd = zbottom, we find a line of non-analytic points along
a = ac. Likewise, if we consider zd = ztop we find non-analyticities in the free energy along
b = ac. Finally, because zbottom and ztop arise as the solution of the same quartic equation
under the interchange a ↔ b, we find non-analyticity for all b = a � ac. Furthermore, we
find that inside the region S = {(a, b)|0 � a � ac, 0 � b � ac} the only physical singularity
is zd . Outside this region, whenever a > b the dominant singularity is given by zbottom and for
b > a we find that ztop dominates.

In figure 3, we find lines of second-order phase transitions along a = ac with b < ac and
b = ac with a < ac. Crossing these phase boundaries we find the crossover exponent to be
φ = 1/2 from the definition

1

φ
= lim

α→α+
c

log(κ − κc)

log(α − αc)
,

where α = log a, κ = − log zc, αc = log ac and κc is the appropriate value of κ at α = αc.
The line a = b with a > ac is a line of first-order transitions. This result can be seen from
the discontinuity of the average density of b contacts at constant a > ac, computable from the
logarithmic derivative of ztop(b).

7
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b

ac

ac a

b = a

Figure 3. Phase diagram for 3dPDWs in an infinite slab. The dashed curve represents the zero-force
curve for this model.

6.2. Effective force of the polymer on the walls

When a = b = 1 and there is no interaction with the walls and we know that the free energy
κw(1, 1) is monotone increasing in w, so that the polymer exerts a repulsive force on the two
walls. Janse van Rensburg et al [7] have shown that this is the case whenever a � 1 or b � 1
for a self-avoiding walk model and their arguments can be carried over to our model mutatis
mutandis. This is essentially because of a loss of entropy when the two surfaces become
close together. When a and b are large enough the attraction of the polymer for both surfaces
overcomes the entropy loss and the polymer exerts an attractive force on the two surfaces.
The free energy κw(a, b) is a decreasing function of w. These effects can be seen explicitly in
our model by computing κw(a, b) for small values of w at different values of a and b. Since
the free energy is a convex function of log a and log b it is continuous and so we expect a
curve in the (a, b)-plane along which the force is zero, i.e. a curve where the singularities are
independent of w. This is equivalent to the walk not ‘seeing’ the second surface (at x3 = w),
so we expect this curve to be related to adsorption at a single surface and, in particular, to go
through the point (ac, ac) and be asymptotic to the lines a = 1 and b = 1.

By considering the free energy for small w from the zeros of Sw(a, b, z) one can see that
the free energy is independent of w for small w on the curve

(a − 1)(b − 1) = ab

4(a + b − 1)2
. (6.3)

Since Sw satisfies the three-term recurrence (4.3), it must be independent for all w. Moreover,
the above arguments imply that for points (a, b) to the left and below this curve the force is
repulsive, while it is attractive for points to the right and above.

7. Discussion

We have introduced and solved a partially directed walk model of a polymer confined between
two parallel planes in three dimensions. The walk can interact, with different interaction
strengths (with Boltzmann factors a and b), with each of the confining planes. The model

8
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is intermediate in the level of difficulty between Dyck and Motzkin path models in two
dimensions, which have been solved in considerable detail [9–11], and the self-avoiding walk
model for which some qualitative rigorous results are available [7] but for which most of our
knowledge comes from numerical approaches [8, 17].

One can consider either an edge-weighted version (where one counts edges in the two
confining planes) or a vertex-weighted version. In most of the paper, we concentrated on the
edge-weighted version. There are two limiting processes: the length of the walk (n) and the
width of the slab (w) both go to infinity. If w → ∞ before n → ∞ the walk never sees one of
the walls, and we have a half-space problem corresponding to polymer adsorption at a single
surface. If n → ∞ before w → ∞, we have an infinite polymer in a slab of diverging width
where the walk sees both confining planes. For this case, we have identified the three phase
boundaries in the (a, b)-plane. Two of these correspond to adsorption at one of the confining
planes, and the third is a first-order transition between adsorption at the two possible planes.
The phase diagram is qualitatively the same as the phase diagrams for Dyck and Motzkin paths
[9, 10] and is qualitatively the same as that conjectured for self-avoiding walks [7]. For small
values of a and b, the walk exerts a repulsive force on the confining planes, while when both
a and b are large the walk exerts an attractive force on the confining planes. Separating these
two regimes in the (a, b)-plane is a zero-force curve which we have identified explicitly for
the edge-weighted model. The zero-force curve is independent of w, as is the case for Dyck
and Motzkin paths [9, 10]. On the other hand, for the self-avoiding walk problem [18], there is
numerical evidence that the zero-force curve is a weak function of w, presumably converging
to a limiting curve as w → ∞.

We have also briefly addressed the vertex-weighted version and the corresponding partially
directed walk problem on the square lattice in two dimensions. The phase diagrams are
qualitatively similar in each case.
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Appendix A. Vertex-weighted bicoloured partially directed walks

We can repeat the procedure outlined above for the case of vertex-weighted 3dPDWs. The
factorization for such walks is given by

Vk+1(a, b, z) = 1

1 − 2az
[1 + az2(Vk(1, b, z) − 1) + 2a2z3(Vk(1, b, z) − 1)Vk+1(a, b, z)],

(A.1)

where all of the same notation as with the edge-weighted case has been carried over, but the
contact parameters a and b are associated with vertices in the two distinguished lines.

Solving equation (A.1) with the initial condition

V1(a, b, z) = 1 − 2bz + 2ab2z3

(1 − 2az)(1 − 2bz) − 4abz4
(A.2)

results in another family of rational generating functions for all finite values of the slab width.
The numerators and denominators of these generating functions satisfy the same three-

term recurrence relation as the edge-weighted model (cf equation (4.3)), but with initial

9
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conditions taken from V1(a, b, z) and V2(a, b, z). Solving this recurrence relation gives a
form for the generating function that explicitly depends on the slab width as in equation (4.6).
In this case, the generating functions depend on the same variables λ± but different cis.

The analysis of this system for large slab widths yields the same singularity structure. The
singularity zv

d is the same for both edge- and vertex-weighted schemes; however, zv
bottom and

zv
top are now related to the simple pole that arises in the half-plane vertex adsorption problem.

We find a different value for the critical interaction from zv
d = zv

bottom, namely a = av
c , where

av
c =

√
3 − 1

2
. (A.3)

A similar result holds between zv
d and zv

top for b = av
c . This defines the region Sv = {

(a, b)|0 �
a � av

c , 0 � b � av
c

}
. Inside Sv the dominant singularity is given by zv

d and outside this region
zv

bottom dominates whenever a > b, zv
top dominates whenever b > a with zv

bottom = zv
top along

a = b. As with the edge-weighted problem, there exists a locus of points along which the
dominant singularity is independent of w; however, its form is considerably more complicated
than that of equation (6.3). Qualitatively, this results in the same phase diagram as the
edge-weighted problem.

Appendix B. Two dimensional partially directed walks

The methods used to study the three-dimensional models above can be adapted and applied
to the two-dimensional versions of partially directed walk models (PDWs). The allowed step
set for PDWs is S3 = {(1, 0), (0, 1), (0,−1)} with the same self-avoidance and slit condition
on the vertices of the walk.

As with 3dPDWs we can consider two different models of adsorbing polymers in a slit by
associating the Boltzmann factors a and b with either the vertices or edges in the distinguished
lines x2 = 0 and x2 = w, respectively. In either case, we use a factorization scheme similar
to the one depicted in figure 2, noting that the horizontal steps are no longer bicoloured. The
resulting factorization equation for edge-weighted PDWs is

Y e
w+1(a, b, z) = 1

1 − az

[
1 + z2

(
Y e

w(1, b, z) − 1
)

+ az3
(
Y e

w(1, b, z) − 1
)
Y e

w+1(a, b, z)
]
,

(B.1)

and for vertex-weighted PDWs, we have

Y v
w+1(a, b, z) = 1

1 − az

[
1 + az2

(
Y v

w(1, b, z) − 1
)

+ a2z3
(
Y v

w(1, b, z) − 1
)
Y v

w+1(a, b, z)
]
.

(B.2)

Each of equations (B.1) and (B.2) can be iterated for small values of w by using the initial
conditions:

Y e
1 (a, b, z) = 1 − bz + bz3

1 − az − bz + abz2 − abz4
(B.3)

and

Y v
1 (a, b, z) = 1 − bz + b2z3

1 − az − bz + abz2 − abz4
(B.4)

for the generating functions of the corresponding walks in a slit of width one.
The rational structure of these functions implies that, for any finite width, the generating

function will have the form of equation (4.2). The numerator and denominator of the generating
functions satisfy a three-term recurrence relation

Tw+2(a, b, z) = (1 − z + z2 + z3)Tw+1(a, b, z) − z2Tw(a, b, z) ∀w ∈ N0, (B.5)
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with initial conditions taken from Y e
1 , Y e

2 , Y v
1 and Y v

2 . Solving equation (B.5) we find that
the explicit dependence on w in the generating function is of the same form as the case of
3dPDWs, namely,

Y x
w(a, b, z) = d1μ

w
+ − d2μ

w
−

d3μw
+ − d4μ

w−
, (B.6)

where x indicates the contact weighting scheme for the model. Here,

μ± = 1 − z + z2 + 2z3 ± √
1 − 2z − z2 − z4 + 2z5 + z6

2
, (B.7)

and the coefficients di are dependent on the weighting scheme used, but have the same structure
as the cis in equations (4.9) and (4.10).

Looking at the limit of large w and n, we find the same relationship between the infinite
slit and the half-plane as discussed in section 5. The problem of adsorption in the half-plane
has previously been studied by PDWs [19–21] and our method confirms these results.

The singularity structure of the generating functions for PDWs is qualitatively the same
as the case of 3dPDWs. We find three singularities—one branch cut and two poles—with the
physically relevant and dominant singularity in the (a, b)-plane determining the free energy
of the system, and hence the phase diagram.

The critical values of the surface interactions in each case are found by equating the
branch cut singularity, zd , to either one of the poles, say zbottom. The critical values for each
model are given by

ae
c = 1 +

1√
2

and av
c = (

√
5 − 1)(1 +

√
2)

2
. (B.8)

The free energy in each model is non-analytic when crossing the line a = ac (b = ac) since
the dominant singularity changes from zd to ztop (zbottom). Due to the symmetry in ztop and
zbottom we also find a line of non-analytic points along b = a which gives the complete phase
diagram for these models.

We also find a collection of points in the (a, b)-plane for the PDW models where the
singularities are independent of the width of the slit. As with the case of 3dPDWs, these
curves represent special values of the interactions where the polymer does not exert a force on
the confining lines. In the edge-weighted scheme, we find that the form of this curve is given
by

(a − 1)(b − 1) = ab

(a + b − 1)2
, (B.9)

whereas the vertex-weighted scheme yields a more complicated relationship.

References

[1] DiMarzio E A and Rubin R J 1971 J. Chem. Phys. 55 4318–36
[2] Hammersley J M and Whittington S G 1985 J. Phys. A: Math. Gen. 18 101–11
[3] Wall F T, Seitz W A, Chin J C and Mandel F 1977 J. Chem. Phys. 67 434–8
[4] Klein D J 1980 J. Stat. Phys. 23 561–86
[5] Alm S E and Janson S 1990 Commun. Stat. - Stoch. Models 6 169–212
[6] Daoud M and de Gennes P G 1977 J. Phys. 38 85–93
[7] Janse van Rensburg E J, Orlandini E and Whittington S G 2006 J. Phys. A: Math. Gen. 39 13869–902
[8] Martin R, Orlandini E, Owczarek A L, Rechnitzer A and Whittington S G 2007 J. Phys. A: Math. Theor.

40 7509–21
[9] Brak R, Owczarek A L, Rechnitzer A and Whittington S G 2005 J. Phys. A: Math. Gen. 38 4309–25

[10] Brak R, Iliev G K, Rechnitzer A and Whittington S G 2007 J. Phys. A: Math. Theor. 40 4415–37

11

http://dx.doi.org/10.1063/1.1676755
http://dx.doi.org/10.1088/0305-4470/18/1/022
http://dx.doi.org/10.1063/1.434886
http://dx.doi.org/10.1007/BF01011730
http://dx.doi.org/10.1080/15326349908807144
http://dx.doi.org/10.1088/0305-4470/39/45/003
http://dx.doi.org/10.1088/1751-8113/40/27/006
http://dx.doi.org/10.1088/0305-4470/38/20/001
http://dx.doi.org/10.1088/1751-8113/40/17/001


J. Phys. A: Math. Theor. 43 (2010) 135001 R Brak et al

[11] Owczarek A L, Prellberg T and Rechnitzer A 2008 J. Phys. A: Math. Theor. 41 035002
[12] Owczarek A L, Brak R and Rechnitzer A 2008 J. Math. Chem. 45 113–28
[13] Orlandini E, Tesi C and Whittington S G 2004 J. Phys. A: Math. Gen. 37 1535–43
[14] Andrews G E, Askey R and Roy R 1999 Special Functions (Encyclopedia of Mathematics and Its Applications

vol 71) (Cambridge: Cambridge University Press)
[15] Chihara T S 1978 An Introduction to Orthogonal Polynomials (Mathematics and Its Applications vol 13)

(New York: Gordon and Breach)
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